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We study a homogeneous Bose gas with purely repulsive forces. Using the Kac scaling of the binary
potential we derive analytically the form of the thermodynamic functions of the gas for small but finite values
of the scaling parameter in the low density regime. In this way we determine dominant corrections to the
mean-field theory. It turns out that repulsive forces increase the pressure at fixed density and decrease the
density at given chemical potentighe temperature is kept constarithey also flatten the Bose momentum
distribution. However, the present analysis cannot be extended to the region where the mean-field theory
predicts the appearence of condensate.
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I. INTRODUCTION analysis will be restricted the region of thermodynamic pa-

Whereas the mean-field theory of an interacting Bose ga@Meters in which quantum Mayer serigarial expansions

is now well understood, going beyond the mean-field deONVerge uniformly with respect to the small parametein

scription in a systematic way presents still an open probleni@Ct: under the assumption that both the potential and its
(see[1] and references given thergir natural tool for such  Fourier transform are non-negative
a study is provided by the Kac scaling of the binary potential

V(r). The scaled potential V(r)=0, \7(k) = f dr exp—ik -r)V(r)=0, (4

VoA = 7V . directly apply here the mai It F. In [1] th
we can directly a ere the main resultg df. In [1] the
becomes weak and long-range when the dimensionless ;;E Y apply Sof. In [1]

- FBose gas is represented as a classical-like system of random
rametery approaches zero. However, the integrated potenti olymers by using the Feynman-Kac path integral formula-
energy

tion of the Gibbs weight together with a cycle decomposition
of the permutation group. Applying standard Mayer graph
a= f drV(r) =f drV(r) <o (2)  summation technique it has been shown therein that the den-
sity p and the chemical potentigl of the Bose gas were
is y-independent, and thus remains constant. The so-calleelated by a self-consistent relation
van der Waals limit(i.e., the thermodynamic limit followed
by y—0) permits us then to derive the mean-field effects p(p) =F(u—=ap(w). 5
correspondm_g to the potent|a!(r_). They depend on the The functionF is defined by a convergent series of multi-
mean potential energgp, wherep is the number _densr[y of connected graphs whenever the chemical potential is suffi-
parﬂclgs. For example, it has been shoyvn that in the case b ently negative, and the convergence is uniform with respect
repul§|ve forces the van d.er Waals limit of the free energyy the scaling parametey. In this regime, and fory<1 the
densityf yields the mean-field formula function F for a scaled potentia{l) takes the asymptotic
a form
fni=fo+ EPZ, (3
FY(v) = Fiad») + ¥F () + o(). (6)
where f, refers to the reference system without interaction © o
V(r). The formula(3) holds both for classical and for quan- HereF (v) represents the sum of zero order contributions
tum gase$2,3]. In the theory of classical fluids one could go from the tree diagrams. It turns out that
even further: the corrections to the zero order mean-field ©
results have been derived, exhibiting the role of fluctuations Fired¥) = po(v), ()
for small but finite values ofy [4].
In the present paper we perform an analogous analysis f
a homogeneous Bose gas, continuing our previous $tlidy
Our object is thus to determine and to investigate the leading
corrections to the mean-field theory predictions for equilib-
rium properties of a gas composed of identical bosons interEquation(6) implies that the dominant corrections to Ef)
acting via purely repulsive forces. The rigorous part of ourare of the orden?. The correcting term

where py denotes the perfect gas density. The limit>0
%elds thus the self-consistent mean field equation

Pmi() = po(it = Bpmi( ) - (8)
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FO) =FY (1) + FY (5 9 BV ( )

)= Fired) * Fing(1) : Fan =22 00 - 12w).  ae)
results from the summation of the tree diagrams and from tth h d d th .

summation of the ring diagrams. In Sec. Il the form of the e have adopted the notation

functi(.)nsFirlge(v) and Fﬁiln)g(v) is der_ived. The corresponding _ " 1 K

equation of state of the Bose gas is presented and analyzed in  f(v) = ﬁﬂpo(V) 2 )\2)3,22 ,zeXD(ﬁQV)

Sec. lll. It is remarkable that the dominant correction to the

pressure has the same structure as that found by Hemmer for (17)

a classical fluid4]. Under the additional assumption that the
formula remains valid up to a neighborhood of the critical 1)
free density, we observe that the mean-field theory a|Wayg|agram5y3Frm (v) has been also calculated fi] [see Eq.

The dominant contribution from resummation of the ring

underestimates the pressure in this region. We study then tHé0): it is derived here in the Appendix for the sake of con-

one-particle reduced density operator displaying the naturenience; see EqA18)]. It reads
of the momentum distributioSec. I\V). Concluding remarks

are presented in Sec. V.

II. SELF-CONSISTENT EQUATION BEYOND MEAN
FIELD

The function

1 E exp(Brq)

y - y
Fled?) (2777\2)3/2q:1 2 x(q) (10

when used in the self-consistent equat{bnyields the term
corresponding to the summation of the tree diagréfes. V
in [1]). Here

&7(q) = (exp(= BU,))q (11
is the partition function of a single closeq polymer, 8
=1/kgT, T is the temperaturekg the Boltzmann constang
the number of particles in the polymer and

eiE
m

is the de Broglie thermal wavelength. The asymptatiex-
pansion of the scaled self-energl, of the polymer follows
from the definition given if1]

(12)

U =y 3q<q 99Dy 10048, y—0,  (13)
so that
k() =1~ f@ﬂv(o) +0(7?). (14)
Inserting Eq.(14) into Eq. (10) we get
Fled ) = po(v) + ¥Fdv) +0(5?), (15)

where

dk_ [BVIOPI(r)
il =51 f
g(V) ) (2m)?® 1+ﬁV(k)f(l)(V)

Using the definitior(17) and denoting respectively kpj and

by pg the first- and the second-order derivative of the perfect
gas density with respect to the chemical potential, we rewrite
Egs.(16) and(18) in the form

V() V()

18)

Fied )= =5 p6(0) == o), (19)
Fﬁ.%()-—f@m f B[ 1~ ——————
’ (2m)? 1+ BY(K) V()
V(O)
=28 ()'Zaa J 2 3log[1 + V(K pg(»)].
(20)

The dominant correction to the mean field fopyp of the
functionF is represented in Eq9) by a term of the ordes?
involving the sum of the tree and of the ring contributions.
Adding up Egs.(19) and (20) we eventually find that the
function FY(v) takes the form of the derivative

Fw =Fin + R =22 2
where
V(0 1 dk ~
o) =)~ 55 | log1 + ki1
(22

Having derived the form oFY(») we can analyze now the
thermodynamic properties of the Bose gas including the cor-
rections of the ordes?.

IIl. EQUATION OF STATE BEYOND MEAN FIELD

A. Pressure at order y°

The grand canonical pressuRéw) satisfies the thermo-
dynamic relation

Yn 1) f(yk)(v) designates the-dependent function, including the
vertex contributionk”(q). Here we have sey=0, and k¥(q)=1,
which yields the definitior(17).
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IP(p)

P =p(p). (23)

Considering the chemical potentjalas a function of density

wn=pu(p) we get from Eq(23) the formula

(o)

p
P(p) = f d(ra'a':—. (24)
0 g

The y-expansion of the chemical potential reads

w(p) = me(p) + ¥ P(p) + 0(?), (25)

where

Hmi(p) = mo(p) +ap

and uo(p)=dfy(p)/ dp is the chemical potential of the perfect

gas[compare with Eq(3)]. Up to the terms of ordey® the
pressure is thus given by

P(p) = Pmilp) + ¥’PV(p), (26)
whereP,{(p)=Py(p) +ap?/2 and

(1)
P)(p) = j D (27

The correctionu™(p) can be readily determined from the

self-consistent equatiof®). Indeed, up to terms of order

p = pol tmip) = ap + Y*uP(p)]1+ ¥’FV(mi(p) — ap).
(28)

As umi(p)—ap=ug(p), upon further expanding of the first

term on the right-hand side of ER8) one finds

p = pol o(P)]+ Ype(kolp) P (p) + Fi(uo(p))]. (29)

The identity pg(uo(p)) =p implies thus the relation

(1
/.L(l)(p) - — M (30)

po(eo(p))

Moreover, sincdY(uw) is the derivative of the functiog(u)
defined in Eq(22), we have

dpo(p)
ap

ag(w) __ 99(xo(p)) _

D(p) ==
w(p) = } =
I L p=pofp) ap

(31)
Upon inserting Eq(31) into Eq. (27) we get the formula

#9(uo(0))

P d
D(p) = - == p—=
PY(p) fo do o5 ( P&p+1>g(ﬂo(P)),

(32

where the second equality follows from integration by parts
and the fact thag(ug(p))|,<0=9(u)|,=—-=0. Using the ex-

plicit form (22) of g(u) we arrive at the final formula
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dk
<1>(p>-£< J —1) f 2 )slog[1+V(k>xO<p>]
(33

where

P -1
Xo(p) = po(uo(p)) = [p%]
I

denotes the compressibility of the perfect Bose gas.
Equation(33) involves not only the thermodynamic func-
tions characterizing the perfect gas but also the shape of the
binary potential. It permits us thus to write down the equa-
tion of state(26) of the interacting Bose gas beyond the
mean-field theory. Remarkably enough, the additional pres-
sure term PY(p) representing the effect of fluctuations
around the mean field has exactly the same structure as the
analogous term derived by Hemmer for classical fllstse

[4], Eq. (59)].
B. Low density behavior

It is interesting to analyze in more detail the form(53)
in the low density limit, where the compressibiligg(p) ap-
proaches zero

Xo(p)=ﬁp+§(wk2)3’zpz+"', p—0. (34

The expansion of the logarithm in E3) yields

PY(p) = 21/3(10i - 1)

dk
[V(O)mp) 5 | o+ ]
(@)

Inserting here Eq(34) we find
2
Dy - P 732\3 — K o2
P (p) = 4{V(O) A ﬁf(zﬂ)g[v(k)] } (36)

The term proportional to3~T37? reflects the effect of
guantum statistics whereas the term proportional Ao
=1/kgT is of classical type, not involvoing the Planck con-
stant. The repulsive potenti®(0) >0 tends to increase the
pressure, but the negative classical term acts in the opposite
direction. Clearly, the lower the temperature the more impor-
tant is the Bose statistics.

Notice that the low density equation of state maintains the
mean-field form

1
P(p) = Po(p) + anpz (37)

but now with ay-dependent constant
K -
[V(k)]z}-

a,=a+ ;ﬁ%{vm)ﬁzﬁ— B f 2m)?

Finally, Eq. (37) should be supplemented with the low den-
sity expansion of the perfect gas pressure

016109-3



P. A. MARTIN AND J. PIASECKI

1
Po(p) = ,E[

Then Eq.(37) yields the second virial coefficient at the order

2
p_P_Ws/z)\3+m]

> (38)

C. Critical region

At this point we make the working hypothesis that the
validity of the formula(33) for PM(p) extends from low
density up to the critical density, . of the free gas provided
that y is small enough whem is close topy.. This is a
plausible assumption if in the range<p < py , at fixed tem-

peratureT, the system does not undergo other phase transi-

tions (solidification, liquefaction At py ., the compressiblilty
of the free gas is known to diverge as

Xolp) ~ ——, (39)
Poc~ P

wherec=1.0868p5 . [5]. For p close topy. we can write

1( 4 dk cV(K)
pL ~—( ——1) | {1 —}
(p) 28\° @m® " poe-p

Poc dk cV(K)

- ! 40

2B(poc—p) J (2m)® poc—p+CV(K) 49
1 [ dk cV(K) }

- log| 1 . 41

26 @2 09{ " o p (1

One sees tha®®(p) — asp— pqy, the positive tern(40)
being the most divergent one. Thus, choosingose topg .
and y? sufficiently small, the pressure correctigfiP™™(p) to

the mean field can be made positive. We conclude that fluc-

PHYSICAL REVIEW E71, 016109(2009

FIG. 1. Dimensionless pressut26): p=P(2m\2)323 as func-
tion of densityn=p(2mA2)%2 for the binary interactior(43). The
pressure correction divergesratng=2.612. The dashed line rep-
resents the mean-field prediction.

Yr(Mrg)®=1, apl2(2m\?%?=0.1

is presented in Fig. 1. The solid line represents the pressure
(26) in dimensionless variables. The dashed line is the mean
field pressuré®,,«(p). Since the correction®P?(p) becomes
positive forp close top, . we see that the mean field pressure
always understimates the exact pressure in this region.

IV. ONE-BODY DENSITY MATRIX AT ORDER %°

The grand canonical one-body density matRxfor a
Bose gas in volumad is defined by its configurational matrix

elements
[

Xf drp(r,ro,...,rnjePNajr
A

1 « efN
=2

IR =22 (=

2» --,rN>symu

tuations beyond mean field always tend to increase the pres-

sure in the vicinity ofpg .

(44)

The nature of the divergence depends on the behavior of

V(k) ask— oo, As an example we consider a powerlike decay

V(k) bk™”7, k—o, >3. Then the strongest divergence
comes from the large values bfin the integral(40). Choos-
ing kg sufficiently large we find

_ Poc f bC
2B(poc—p) k”(pOC K(poc — p) + bC
Nmagal o “

Since the second integréd1) behaves asgp,.—p) %7, we
see that the pressure correction diverges @,
—p) 3 5 po.. An illustration corresponding to the
choice

a -
V(r) = ﬁexp(— rirg), V(k) =

0

a
aeege

with Hy , the N-particle Hamiltonian and the matrix ele-

ments taken in the space of symmetrized wave functions. In
the low density regime it admits the classical-like represen-
tation [Eq. (A2) and (A5) of the Appendi¥ in terms of an
open polymer immersed in a gas of closed polymers. In the
thermodynamic limit Mayer graphs resummations enable to
determine(r |R(w)|r’) from the formula[see Appendix, Eq.
(A7)]

(rIRWIr"y =F 1 (- ap(u)), (45)
where, as in Eq(5), F;,/(v) is the sum of multiply con-
nected graphs with a root point labeled by an open polymer.
It reduces toF(v) asr=r’, so the diagonal patr |R(w)|r)
=p(u) satisfies the self-consistent equati@). Because of
the invariance under translations and under rotations
Fe o (1)=F(r=r"],»), so that({r|[R(w|r Y=R(r-r’|, ) de-
pend only on the distance-r’|. Hence we can sat’'=0
without loss of generality. The Fourier transform
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ﬁ(p,m=fdré’”R(r,u), p=|p| (46)

gives the distribution of momenturfip of an interacting
Bose particle. It is determined by E@5) in the Fourier
representation

R(p, 1) = F(p, 1 — ap(w)). (47)

A. Grand-canonical density

We first consider the diagonal part of the density matrix

(i.e., the particle densijyup to terms of orden?

p() = pmi() + ¥*p (), (48)

wherep,,; is the solution of Eq(8). Using Eq.(5) and they
expansion(6) of function F” we thus find

pni(2) + ¥pP (W) = po(s — Bpmi ) —ay*p M (1))
+ P FO (1 - apmiw)
= po(p = apmdp))
= v’ap' M (W) po(pe = apmi 1)
+ PR (= apmi ). (49)
Owing to Eq.(8) the above relation yields the formula
FU(u - apmi(p)
1 +apy(u— apmiw)’

whereF is given by Eq.(21).
The density correctiop™(u) involves functions of the
argument

pP(p) = (50)

v(p) = p = apmi ). (5

Notice that on one hand

v

—=1-apn(w),
I

and on the other hand the mean field equat®nmplies

v _ ppip)
du po(v)
so that
v _ 1

ap L+apy(v)’ (52

The density correctiof60) can be thus rewritten in the form

p V() = F<1>(u(u>)j—”, (53)
J

which in view of the structure of Eq21) finally yields

@ _ 99(v(w)
p (M)——aﬂ ,

where functiong(v) has been defined in ER2).

(54)
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m

FIG. 2. Dimensionless densit9): n=p(2m\?)%/2 as function
of the chemical potentiah= w3 for the binary interactioni43). The
dashed line represents the mean-field prediction which overesti-
mates the density. We put here=ag/(2m\?)%?=1.5 and
a(yNrg)®=4y2/m. The density correction diverges an=my,
=apy.=3.93.

This correction to the grand-canonical density can also
be studied at low density and in the critical region. If
v~u—-— (i.e., low density one finds thatp™®(w)
~ A(B)e** where, as for the pressure, the sign of the coef-
ficient A(B) depends if effects of Bose statistics dominate
classical corrections or not. Extrapolating the form(84)
to the neighborhood of the critical mean field chemical
potential um¢.=apg., one deduces first from the mean
field equation thatv(u)~=C(B)(mic—x)?, C(B) >0, as
p— umicle<umic). Then analyzing thek-integrals as in
Sec. Il C one sees that?(u) diverges to = as i — un.

[for V(K)~bk ™, p® (1) ~~(pmic—p) 1320 as for the
pressurg¢ Thus, takingu close touy . andy small enough,

the density decreases when fluctuations are taken into ac-
count. This is illustrated in Fig. 2.

B. The momentum distribution

The momentum distributioﬁ{(p,p) at ordery?, consid-
ered as a function of the density

R(p.p) =R(p,p) + ¥*R¥(p,p) (55)
is found from the relatior{47) by using they-expansion of

F” which follows from Eq. (A19) an from the relation

W pumdp)) =[umi—ap()] 4=y, (p)=wo(p). We observe that at
the dominant ordefsee Egs(A10) and (Al11)]

AR(O)(p!p) =Ng (p’ V)|V=M0(p) (56)

is the free Bose momentum distribution at dengityPro-
ceeding as in Eq$28)—(30) one finds

A ~ ! @
R(p,p) = F O, olp) - {—”0('“' o (”)} .
Po(V) v=p0(p)

(57)

Inserting the expressiotA19) for FY(p,») and for F¥(»)
= fdpFY(p, »)/(2m)® one obtains the final result
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RY(p,p) = CPB)[ i )no(p, v)—n (p,v)] :
0( ) V:M()(P)
(58)
where
1 [ dk V(K)
( , ):— — .
=28 <%ﬁ41+ww%wamJ
Notice that
f P R®(p.p)=0 (59)
(@m® PP
as requested by the fact that the integrals
dp o~ [ 9P 2o -
f(ZWFRmJﬂ—J.QWPR (pp)=p (60

are fixed by the total density.

Some properties oﬁ?(p, p) can be derived from those of
the free Bose distribution

z

no(p,2) = expN2pP2) — 2

wherez=€%", 0<z<1, is the activity parameter. One sets

ny(p,2) = B g(p,v) = No(p,2)[ 1 +no(p, 2],

ny(p,2) = B72nG(p,v) =ny(p,2)[1 + 2ng(p,2)].  (61)
Then
R(p,2) =ng(p,2) + elny(p,2r(2 —no(p,2)], (62
with
H(V) f dp nZ(plZ)
r2)= B”O,( = . (63)
po? Jmmma

The parametee=y>c(p, 8) 8% in Eq.(62) incorporates all the
p-independant factorisee Eq(58)]. Sincee is proportional
to +* it can be chosen as small as one wishes at any densi

p<poc We observe that
2z 1+z
1+ —|=n(p.29| — 64

_Z) ﬂp)<1_z) (64)

nZ(p!Z) = nl(prz)( 1

implying

1+z
<_1

-7

r(z)

01610
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FIG. 3. Momentum density62): n(p)=§(p,0.5) as function of
momentump. We putA=1 ande=0.9. The dashed line represents
the ideal gas Bose distribution.

<

=

1+z
[n1(p, 21 (2) = N2(p, D) Jp=0= 1- ){r(Z) } 0.

(65)

One concludes that the distributiongat 0 in presence of the
interaction is always less than the free vahi€l —z). Evalu-
ating the correction ap— » gives

[N1(p.2)r(2) = no(p,2)] ~ zexp(- \*p?2)[r(2) - 1] = 0,
(66)

since Nng(p,2) ~ny(p,2) ~Ny(p,2) ~ zexp(—\?p%/2), p— =,

and for all p and z, ny(p,2)=ny(p,2), implying r(z)=1.
Thus the momentum distribution is flattened and broadened
by repulsive interactions, as illustrated in Fig. 3.

V. CONCLUDING REMARKS

Divergences occurring at the critical values of the free gas
reflect the fact that the ordef® of the correction is not ad-
equate there. Since we know from rigorous work that the
exact pressur®,, converges to the mean field pressitg
for all values of the thermodynamical parametfé$ one
may conclude that the rate of approach to mean field at
critical values of the free gas is of the ordgf for some
0<6<3.

The question of constructing the asymptofiexpansion
valid in the critical region(up to the critical point included
remains an open and challenging problem. In our analysis,
the critical values of density and of temperature are still
those of the free gas. One expects that for nonzero but small
v the critical mean field chemical potential,¢.=apg. and
H’ensnyp(,c will be slightly displaced. Such an information
requires, as a first step, a nonperturbative understanding of
the largeq behavior of the single polymer partition function
x’(q) (1) as q—x for fixed y [in place of the smally
expansion(14) used herg For instance an exponential be-
havior «”(q) ~ €4 would modify the radius of conver-
gence of the serie€l0) from »=0 to »=C, thus causing a
displacement of the critical chemical potential. Exponential
lower and upper bounds have been obtained(@, but its
exact largeg asymptotics is not known ydsee a discussion
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of these points in Sec. V dfl]). The above considerations the loop density,y, Studied in[1].2 In view of its form (A2)
refer to the class of tree graphs. Furthermore one also has g4(L, ;) has the Mayer expansion presented in H@9)—
take into account the contribution of ring graphs in a nonper{31) of [1] in terms of Ursell functions. The only difference
turbative way and possibly of other classes of multicon-is that the argument of the root point Lz, has to be iden-
nected graphs representing mutual polymer interactions. lified with the open polyme(Al). Polymer interactions, ef-
thus appears that a reliable description of the critical regioriective activities and Mayer bonds are the same aglin
including the critical point leads to deep mathematical prob-except at the root point, where the interaction between a loop
lems not solvable by the analysis presented here. L£;=(R;,q;,X;) with an open polymer is

The results of the paper enable nevertheless to obtain
some insight on the immediate vicinity of the critical mean q a9
field values by takingy sufficiently small(provided that our V(L (1, L) =J de dgdls-s)
formulas keep their validity up to this pointThen qualita- o 7o
tive statement could be established, as the fact that the exact s s
pressure should be higher than that predicted in this region XV[<1 ——)r + 1" +AX(s) =R = AX|(s)
by the mean field. Another conclusion is that approaching the q d
critical mean field chemical potential,;.=apy. along an (A3)
isotherm one finds the interacting gas at a density lower than i
that appearing in the mean field approach. and the self-energy of the open polymer is

1[4 q ~
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2P03B00823. Finally, to obtain the one-body density matdx/R(w)|r"),

one has to integrate on the internal degrees of freedom of the
APPENDIX open polymer
* |r _ /|2
1. Polymer representation of the one-body reduced rIRwlrH=> qJ Dq(X)eXp<— —g)Pop(ﬁr,r')-
density matrix g1 20\

The representation of the off-diagonal reduced density (AS)
matrix r|R(x)|r") in the formalism of random polymers de- The g factor takes into account the presenceygfarticles in
scribed in Sec. Il of1] requires the consideration of open e onen polymer and the additionnal Gaussian comes from
Brownian pathsiopen polymersin the time interval 6=s  yhe Brownian Wiener weight for a path startingrirat time
=q vy|th extremities atr ar_ld r’. In the Brownian bridge ¢-( ang ending at’ at times=q. From now on the analysis
notation they are parametrized as of the Mayer series can be performed exactly along the same

s s lines as that given ifl] with the following results.

(1 - —)r +-r’"+AX(s), 0ss=<q, (A1) (i) The Mayer series representifgR(u)|r’) converges

q q for u sufficiently negative u <-ap o); for a scaled potential
where X(s) is a closed path distributed with the Brownian V,(r), the convergence is uniform with respectyto
bridge measur¢Eq. (18) in [1]; here and in the sequel we (i) Let I(Z,,/) be the value of the sum of all multiply
use the same notations as[it]]. The open polymer, connected graphs with root poid} ,/, and define the func-
=(r,r’',q,X(s)), 0=s=q is characterized by its end points tion of the chemical potentiat
r, r’, the numbem of particles belonging to it and its ran-

dom shapeX(s). By a slight generalization of the analysis * Ir=r'[2
that led to the “magic formulalEq. (14) in [1]] one obtains OEDY qf Dq(X)EXP<— P )'(ﬁr,r/)-
the density for an open polymer immersed in a grand canoni- g1 q
cal ensemble of closed polymers as (AB)
o n
poo Ly 1) = =3 'Z(EW) I1 dLz(L) Then the reduced density matrix is given by
EAn=1 (n-1)! i=2
X ex - BU(L, (1, Lo, L), (A2) ’The quantity kgTlogpop(L; () can be interpreted as the excess

grand potential when a fixed open polym&t,, is introduced in the
whereE , is the partition function. If =r’ this reduces to the system of closed polymers.
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<r|R(,u)|r’> = Fr,r/(ILL_ap(M))! (A7)

where the density(w) solves the self-consistent equation

5).

2. The ¥2 correction

For a scaled potentidly< 1), the functionF(r ,v) takes
the asymptotic form

1
ring

0 1

FU(r,v) = Faedr,v) + ¥ [Fyedl v) + Fring(r, )] + 0(7?)

(A8)

0)
wedl V) represents the sum of zero

as in Eq.(6) where F

PHYSICAL REVIEW E71, 016109(2009

%Z(‘Cr,r’) f d‘Cl e j dﬁn[_ ﬁv(ﬁr,r’a‘cl)] X
n-1

X [H z(Ly)[- BV(E,-,EJ-+1)]] [=BV(Ly, L )]
j=1

(A13)

The factor 1/2 is the symmetry factor of the graph. Introduc-
ing the scaled potentiay®V(yr) and changing tha spatial
integration variable®; to yR; will produce an overall factor

¥% in Eq. (A13) since there ar@+1 bonds. At orden?, we

are thus entitled to neglect the quantum fluctuation part
YAX(sj) in the arguments of the potentilise dominated
convergence and the fact that the Gaussian meaByres;)

order contributions coming from the tree diagrams. The sun, normalizel For the same reason we neglect dneie—

of tree diagrams yields

1
>
(2,71_)\2)3/2(1:1

_ r_2>
2\%q
3/2

o
q

r=|r|,

Fgee(r V) = «"(q),

(A9)

|

(A10)

so that

r2

» ex —
2\%q

>

a=1

-

312
q

FO(r,v) = lim Fedr,») =
’}/*)

Y

(271_)\2)3/2

dk
(2m)®

e—ik-fno(k, V) = pO(r ’ V)

is nothing else than the off-diagonal reduced density matrix

po(r, v)=(r|Ry(v)|0) of the free gas at chemical potential

Indeed,Fi?ge(r ,v) is the Fourier transform of the Bose occu-

pation number densitgy(k, v)

1
5 .
exp(@ —ﬁy) -1

The 2 correction is obtained in expanding the partition func-
tion «¥(q) of a single polymer irF}.(r,v) as done in Egs.

(1116

no(k, v) = (A11)

F(l)

tree\’ »

[FV(r,v) - f@(r,v)],

)= BV(0)
)

Kk

. 190
with f®(r,v) = Eﬁpo(r,v). (A12)

Clearly f¥(r , v)|,-o=f®(v) defined in Eq(17). We now per-
form the ring summation to determi iln)g(r ,v). The con-

tribution to I j,4(£, ,+) of a ring with one root pointZ, ./, n
integrated vertice€; andn+1 linearized bond$-4V) is

pendence in the activities. Within this approximation we take
the bonds and the vertices equal to

4 s s
Vy(Er,r’an):'ygqu ds\{(l—a)ﬂ +avr'-7R,},
0

VAL} L) = qj'qi+1)’?V()’Rj - WRjs),

2Ly, ) =2L;) = =72%q). (A14)

vq
CI(27T)\2C])3/2

At this point we keep they parameter in combinationgr
and yr’ sincer, r’ can be large. Hence after the change of
variablesR;— yR; Eq. (A13) becomes

{ ]

X (H quZ(O)(qj)> (H [- BV(R; - Rj+1)]>
j=1 j=1

quds’V{Rn—( Sr)
0 q

1 _—
Introducing the Fourier transforﬁﬂ(k) and using the convo-
lution theorem vyields

fz(o)(q)[f(”(v)]“ f s f "as f
2 0 0

Xexp[iyk (r —r’)(%)][— BV,
(A16)

q

0

!

S
- =, Al5
0 qyr] (A15)

dk
(2m)®

wheref®(»)=37_,¢?2%(q) is the function(17). This has to
be summed om=1, 2, ... and integrated over the internal
degrees of freedom of the root point according to &®f).
One finds
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rlng(r -r’

%qu(")(q)
g=1
-t )| s oo
X ex 202 2m? s s
-s
k !
xexp{w (r r)( q )]

[,B’V(k)]zf‘1 (v)
1 + BV FV (1)

Finally, taking Eq.(A14) into account, the Fourier transform

IA:(l)(p,v):fdre‘p'rFiilrfg(r,v) at wave numbep is found to
be

Fiog(p.v) = 5 ququj dsf d§J
\? s-g
{ 2 p”’k( q )
o |

(A17)

(2m)®

q] [BV() TPV (v)
1+ BV(K Y (v)

xXe

dk [ﬁV(k)]zf(”(V)
(2m)° 1 + gU(k)f 1>(V)

(A18)

PHYSICAL REVIEW Er71, 016109(2005

As a consequence of the Gaussian weight occurring for off-

diagonal elements #r’ the remainingy dependence has

been neglected in EGA18). {?(p,v) is the Fourier trans-
form of the function(A12). We note that

f 2 )3F£.1n>g(p, ) = Fiing(»)

reduces to the formulél8) used in Sec. Il.
The final result for they® correction is obtained by adding
the tree contributiorfA12)—(A18)

FO(p,») = Fiodp.») + Fing(p.v)

VO )__n " ”)f V(K)
5> No(P. ) @1 e wpl(n)
(A19)

where we have expressed all quantities in terms of the den-

sity and the Bose momentum distributioh11) of the free
gas.
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