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We study a homogeneous Bose gas with purely repulsive forces. Using the Kac scaling of the binary
potential we derive analytically the form of the thermodynamic functions of the gas for small but finite values
of the scaling parameter in the low density regime. In this way we determine dominant corrections to the
mean-field theory. It turns out that repulsive forces increase the pressure at fixed density and decrease the
density at given chemical potentialsthe temperature is kept constantd. They also flatten the Bose momentum
distribution. However, the present analysis cannot be extended to the region where the mean-field theory
predicts the appearence of condensate.
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I. INTRODUCTION

Whereas the mean-field theory of an interacting Bose gas
is now well understood, going beyond the mean-field de-
scription in a systematic way presents still an open problem
sseef1g and references given thereind. A natural tool for such
a study is provided by the Kac scaling of the binary potential
Vsrd. The scaled potential

Vgsrd = g3Vsgrd s1d

becomes weak and long-range when the dimensionless pa-
rameterg approaches zero. However, the integrated potential
energy

a =E drVsrd =E drVgsrd , ` s2d

is g-independent, and thus remains constant. The so-called
van der Waals limitsi.e., the thermodynamic limit followed
by g→0d permits us then to derive the mean-field effects
corresponding to the potentialVsrd. They depend on the
mean potential energyar, wherer is the number density of
particles. For example, it has been shown that in the case of
repulsive forces the van der Waals limit of the free energy
density f yields the mean-field formula

fmf = f0 +
a

2
r2, s3d

where f0 refers to the reference system without interaction
Vsrd. The formulas3d holds both for classical and for quan-
tum gasesf2,3g. In the theory of classical fluids one could go
even further: the corrections to the zero order mean-field
results have been derived, exhibiting the role of fluctuations
for small but finite values ofg f4g.

In the present paper we perform an analogous analysis for
a homogeneous Bose gas, continuing our previous studyf1g.
Our object is thus to determine and to investigate the leading
corrections to the mean-field theory predictions for equilib-
rium properties of a gas composed of identical bosons inter-
acting via purely repulsive forces. The rigorous part of our

analysis will be restricted the region of thermodynamic pa-
rameters in which quantum Mayer seriessvirial expansionsd
converge uniformly with respect to the small parameterg. In
fact, under the assumption that both the potential and its
Fourier transform are non-negative

Vsrd ù 0, V̂skd =E dr exps− ik · r dVsrd ù 0, s4d

we can directly apply here the main results off1g. In f1g the
Bose gas is represented as a classical-like system of random
polymers by using the Feynman-Kac path integral formula-
tion of the Gibbs weight together with a cycle decomposition
of the permutation group. Applying standard Mayer graph
summation technique it has been shown therein that the den-
sity r and the chemical potentialm of the Bose gas were
related by a self-consistent relation

rsmd = F„m − arsmd…. s5d

The functionF is defined by a convergent series of multi-
connected graphs whenever the chemical potential is suffi-
ciently negative, and the convergence is uniform with respect
to the scaling parameterg. In this regime, and forg!1 the
function F for a scaled potentials1d takes the asymptotic
form

Fgsnd = Ftree
s0d snd + g3Fs1dsnd + osg3d. s6d

HereFtree
s0d snd represents the sum of zero order contributions

from the tree diagrams. It turns out that

Ftree
s0d snd = r0snd, s7d

where r0 denotes the perfect gas density. The limitg→0
yields thus the self-consistent mean field equation

rmfsmd = r0„m − armfsmd…. s8d

Equations6d implies that the dominant corrections to Eq.s8d
are of the orderg3. The correcting term
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Fs1dsnd = Ftree
s1d snd + Fring

s1d snd s9d

results from the summation of the tree diagrams and from the
summation of the ring diagrams. In Sec. II the form of the
functionsFtree

s1d snd andFring
s1d snd is derived. The corresponding

equation of state of the Bose gas is presented and analyzed in
Sec. III. It is remarkable that the dominant correction to the
pressure has the same structure as that found by Hemmer for
a classical fluidf4g. Under the additional assumption that the
formula remains valid up to a neighborhood of the critical
free density, we observe that the mean-field theory always
underestimates the pressure in this region. We study then the
one-particle reduced density operator displaying the nature
of the momentum distributionsSec. IVd. Concluding remarks
are presented in Sec. V.

II. SELF-CONSISTENT EQUATION BEYOND MEAN
FIELD

The function

Ftree
g snd =

1

s2pl2d3/2o
q=1

`
expsbnqd

q3/2 kgsqd s10d

when used in the self-consistent equations5d yields the term
corresponding to the summation of the tree diagramssSec. V
in f1gd. Here

kgsqd = kexps− bUgdlq s11d

is the partition function of a single closedq polymer, b
=1/kBT, T is the temperature,kB the Boltzmann constant,q
the number of particles in the polymer and

l = "Îb

m
s12d

is the de Broglie thermal wavelength. The asymptoticg ex-
pansion of the scaled self-energyUg of the polymer follows
from the definition given inf1g

Ug = g3qsq − 1d
2

Vs0d + osg3d, g → 0, s13d

so that

kgsqd = 1 −g3qsq − 1d
2

bVs0d + osg3d. s14d

Inserting Eq.s14d into Eq. s10d we get

Ftree
g snd = r0snd + g3Ftree

s1d snd + osg3d, s15d

where

Ftree
s1d snd =

bVs0d
2

„f s1dsnd − f s2dsnd…. s16d

We have adopted the notation1

f skdsnd =
1

bk

]k

]nkr0snd =
1

s2pl2d3/2o
q=1

`
qk

q3/2expsbqnd.

s17d

The dominant contribution from resummation of the ring
diagramsg3Fring

s1d snd has been also calculated inf1g fsee Eq.
s70d; it is derived here in the Appendix for the sake of con-
venience; see Eq.sA18dg. It reads

Fring
s1d snd =

1

2
f s2dsnd E dk

s2pd3

fbV̂skdg2f s1dsnd

1 + bV̂skdf s1dsnd
. s18d

Using the definitions17d and denoting respectively byr08 and
by r09 the first- and the second-order derivative of the perfect
gas density with respect to the chemical potential, we rewrite
Eqs.s16d and s18d in the form

Ftree
s1d snd =

Vs0d
2

r08snd −
Vs0d
2b

r09snd, s19d

Fring
s1d snd =

1

2
f s2dsnd E dk

s2pd3bV̂skdF1 −
1

1 + bV̂skdf s1dsnd
G

=
Vs0d
2b

r09snd −
1

2b

]

]n
E dk

s2pd3logf1 + V̂skdr08sndg.

s20d

The dominant correction to the mean field formr0 of the
functionF is represented in Eq.s9d by a term of the orderg3

involving the sum of the tree and of the ring contributions.
Adding up Eqs.s19d and s20d we eventually find that the
function Fs1dsnd takes the form of the derivative

Fs1dsnd = Ftree
s1d snd + Fring

s1d snd =
]gsnd

]n
, s21d

where

gsnd =
Vs0d

2
r0snd −

1

2b
E dk

s2pd3logf1 + V̂skdr08sndg.

s22d

Having derived the form ofFs1dsnd we can analyze now the
thermodynamic properties of the Bose gas including the cor-
rections of the orderg3.

III. EQUATION OF STATE BEYOND MEAN FIELD

A. Pressure at orderg3

The grand canonical pressurePsmd satisfies the thermo-
dynamic relation

1In f1g fg
skdsnd designates theg-dependent function, including the

vertex contributionkgsqd. Here we have setg=0, andkgsqd=1,
which yields the definitions17d.
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]Psmd
]m

= rsmd. s23d

Considering the chemical potentialm as a function of density
m=msrd we get from Eq.s23d the formula

Psrd =E
0

r

ds s
]mssd

]s
. s24d

The g-expansion of the chemical potential reads

msrd = mmfsrd + g3ms1dsrd + osg3d, s25d

where

mmfsrd = m0srd + ar

andm0srd=]f0srd /]r is the chemical potential of the perfect
gasfcompare with Eq.s3dg. Up to the terms of orderg3 the
pressure is thus given by

Psrd = Pmfsrd + g3Ps1dsrd, s26d

wherePmfsrd=P0srd+ar2/2 and

Ps1dsrd =E
0

r

ds s
]ms1dssd

]s
. s27d

The correctionms1dsrd can be readily determined from the
self-consistent equations5d. Indeed, up to terms of orderg3

r = r0fmmfsrd − ar + g3ms1dsrdg + g3Fs1d
„mmfsrd − ar….

s28d

As mmfsrd−ar=m0srd, upon further expanding of the first
term on the right-hand side of Eq.s28d one finds

r = r0fm0srdg + g3fr08„m0srd…ms1dsrd + F1
„m0srd…g. s29d

The identityr0(m0srd)=r implies thus the relation

ms1dsrd = −
Fs1d

„m0srd…
r08„m0srd…

. s30d

Moreover, sinceFs1dsmd is the derivative of the functiongsmd
defined in Eq.s22d, we have

ms1dsrd = −
]m0srd

]r
F ]gsmd

]m
G

m=m0srd
= −

]g„m0srd…
]r

.

s31d

Upon inserting Eq.s31d into Eq. s27d we get the formula

Ps1dsrd = −E
0

r

ds s
]2g„m0ssd…

]s2 = S− r
]

]r
+ 1Dg„m0srd…,

s32d

where the second equality follows from integration by parts
and the fact thatg(m0srd)ur=0=gsmdum=−`=0. Using the ex-
plicit form s22d of gsmd we arrive at the final formula

Ps1dsrd =
1

2b
Sr

]

]r
− 1D E dk

s2pd3logf1 + V̂skdx0srdg,

s33d

where

x0srd = r08„m0srd… = Fr
]P0

]r
G−1

denotes the compressibility of the perfect Bose gas.
Equations33d involves not only the thermodynamic func-

tions characterizing the perfect gas but also the shape of the
binary potential. It permits us thus to write down the equa-
tion of states26d of the interacting Bose gas beyond the
mean-field theory. Remarkably enough, the additional pres-
sure term Ps1dsrd representing the effect of fluctuations
around the mean field has exactly the same structure as the
analogous term derived by Hemmer for classical fluidsfsee
f4g, Eq. s55dg.

B. Low density behavior

It is interesting to analyze in more detail the formulas33d
in the low density limit, where the compressibilityx0srd ap-
proaches zero

x0srd = br +
b

2
spl2d3/2r2 + ¯ , r → 0. s34d

The expansion of the logarithm in Eq.s33d yields

Ps1dsrd =
1

2b
Sr

]

]r
− 1D

3FVs0dx0srd −
1

2
E dk

s2pd3fV̂skdx0srdg2 + ¯G .

s35d

Inserting here Eq.s34d we find

Ps1dsrd =
r2

4
FVs0dp3/2l3 − bE dk

s2pd3fV̂skdg2G . s36d

The term proportional tol3,T−3/2 reflects the effect of
quantum statistics whereas the term proportional tob
=1/kBT is of classical type, not involvoing the Planck con-
stant. The repulsive potentialVs0d.0 tends to increase the
pressure, but the negative classical term acts in the opposite
direction. Clearly, the lower the temperature the more impor-
tant is the Bose statistics.

Notice that the low density equation of state maintains the
mean-field form

Psrd = P0srd +
1

2
agr2 s37d

but now with ag-dependent constant

ag = a + g31

2
FVs0dp3/2l3 − bE dk

s2pd3fV̂skdg2G .

Finally, Eq. s37d should be supplemented with the low den-
sity expansion of the perfect gas pressure
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P0srd =
1

b
Fr −

r2

2
p3/2l3 + ¯G . s38d

Then Eq.s37d yields the second virial coefficient at the order
g3.

C. Critical region

At this point we make the working hypothesis that the
validity of the formula s33d for Ps1dsrd extends from low
density up to the critical densityr0,c of the free gas provided
that g is small enough whenr is close tor0,c. This is a
plausible assumption if in the range 0ør,r0,c, at fixed tem-
peratureT, the system does not undergo other phase transi-
tionsssolidification, liquefactiond. At r0,c, the compressiblilty
of the free gas is known to diverge as

x0srd ,
c

r0,c − r
, s39d

wherec=1.086br0,c
2 f5g. For r close tor0,c we can write

Ps1dsrd ,
1

2b
Sr

]

]r
− 1D E dk

s2pd3logF1 +
cV̂skd

r0,c − r
G

,
r0,c

2bsr0,c − rd E dk

s2pd3

cV̂skd

r0,c − r + cV̂skd
s40d

−
1

2b
E dk

s2pd3logF1 +
cV̂skd

r0,c − r
G . s41d

One sees thatPs1dsrd→` asr→r0,c, the positive terms40d
being the most divergent one. Thus, choosingr close tor0,c
andg3 sufficiently small, the pressure correctiong3Ps1dsrd to
the mean field can be made positive. We conclude that fluc-
tuations beyond mean field always tend to increase the pres-
sure in the vicinity ofr0,c.

The nature of the divergence depends on the behavior of

V̂skd ask→`. As an example we consider a powerlike decay

V̂skd,bk−h , k→` , h.3. Then the strongest divergence
comes from the large values ofk in the integrals40d. Choos-
ing k0 sufficiently large we find

r0,c

2bsr0,c − rdEk0

` dk

2p2k2 bc

khsr0,c − rd + bc

, S 1

sr0,c − rd1+3/hD r0,c

8bp2E
0

`

duu2 bc

uh + bc
. s42d

Since the second integrals41d behaves assr0,c−rd−s3/hd, we
see that the pressure correction diverges assr0,c

−rd−s1+3/hd ,r→r0,c. An illustration corresponding to the
choice

Vsrd =
a

8pr0
3exps− r/r0d, V̂skd =

a

s1 + k2r0
2d2 , s43d

g3psl/r0d3 = 1, ab/2s2pl2d3/2 = 0.1

is presented in Fig. 1. The solid line represents the pressure
s26d in dimensionless variables. The dashed line is the mean
field pressurePmfsrd. Since the correctiong3Ps1dsrd becomes
positive forr close tor0,c we see that the mean field pressure
always understimates the exact pressure in this region.

IV. ONE-BODY DENSITY MATRIX AT ORDER g3

The grand canonical one-body density matrixR for a
Bose gas in volumeL is defined by its configurational matrix
elements

kr uRsmdur 8l =
1

JL
o
N=1

`
ebmN

sN − 1d!EL

dr 2 ¯

3E
L

dr Nkr ,r 2,…,r Nue−bHN,Lur 8,r 2,…,r Nlsym,

s44d

with HN,L the N-particle Hamiltonian and the matrix ele-
ments taken in the space of symmetrized wave functions. In
the low density regime it admits the classical-like represen-
tation fEq. sA2d and sA5d of the Appendixg in terms of an
open polymer immersed in a gas of closed polymers. In the
thermodynamic limit Mayer graphs resummations enable to
determinekr uRsmdur 8l from the formulafsee Appendix, Eq.
sA7dg

kr uRsmdur 8l = Fr ,r8„m − arsmd…, s45d

where, as in Eq.s5d, Fr ,r8snd is the sum of multiply con-
nected graphs with a root point labeled by an open polymer.
It reduces toFsnd as r =r 8, so the diagonal partkr uRsmdur l
=rsmd satisfies the self-consistent equations5d. Because of
the invariance under translations and under rotations
Fr ,r8snd=Fsur −r 8u ,nd, so thatkr uRsmdur 8l=Rsur −r 8u ,md de-
pend only on the distanceur −r 8u. Hence we can setr 8=0
without loss of generality. The Fourier transform

FIG. 1. Dimensionless pressures26d: p=Ps2pl2d3/2b as func-
tion of densityn=rs2pl2d3/2 for the binary interactions43d. The
pressure correction diverges atn=n0,c=2.612. The dashed line rep-
resents the mean-field prediction.
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R̂sp,md =E dreip·rRsr ,md, p = upu s46d

gives the distribution of momentum"p of an interacting
Bose particle. It is determined by Eq.s45d in the Fourier
representation

R̂sp,md = F̂„p,m − arsmd…. s47d

A. Grand-canonical density

We first consider the diagonal part of the density matrix
si.e., the particle densityd up to terms of orderg3

rsmd = rmfsmd + g3rs1dsmd, s48d

wherermf is the solution of Eq.s8d. Using Eq.s5d and theg
expansions6d of function Fg we thus find

rmfsmd + g3rs1dsmd = r0„m − armfsmd − ag3rs1dsmd…

+ g3Fs1d
„m − armfsmd…

= r0„m − armfsmd…

− g3ars1dsmdr08„m − armfsmd…

+ g3Fs1d
„m − armfsmd…. s49d

Owing to Eq.s8d the above relation yields the formula

rs1dsmd =
Fs1d

„m − armfsmd…
1 + ar08„m − armfsmd…

, s50d

whereFs1d is given by Eq.s21d.
The density correctionrs1dsmd involves functions of the

argument

nsmd = m − armfsmd. s51d

Notice that on one hand

]n

]m
= 1 −armf8 smd,

and on the other hand the mean field equations8d implies

]n

]m
=

rmf8 smd
r08snd

,

so that

]n

]m
=

1

1 + ar08snd
. s52d

The density corrections50d can be thus rewritten in the form

rs1dsmd = Fs1d
„nsmd…

]n

]m
, s53d

which in view of the structure of Eq.s21d finally yields

rs1dsmd =
]g„nsmd…

]m
, s54d

where functiongsnd has been defined in Eq.s22d.

This correction to the grand-canonical density can also
be studied at low density and in the critical region. If
n,m→−` si.e., low densityd one finds that rs1dsmd
,Asbde2bm where, as for the pressure, the sign of the coef-
ficient Asbd depends if effects of Bose statistics dominate
classical corrections or not. Extrapolating the formulas54d
to the neighborhood of the critical mean field chemical
potential mmf,c=ar0,c, one deduces first from the mean
field equation thatnsmd,−Csbdsmmf,c−md2, Csbd.0, as
m→mmf,csm,mmf,cd. Then analyzing thek-integrals as in
Sec. III C one sees thatrs1dsmd diverges to −̀ asm→mmf,c

ffor V̂skd,bk−h , rs1dsmd,−smmf,c−md−s1+3/2hd as for the
pressureg. Thus, takingm close tommf,c andg small enough,
the density decreases when fluctuations are taken into ac-
count. This is illustrated in Fig. 2.

B. The momentum distribution

The momentum distributionR̂sp,rd at orderg3, consid-
ered as a function of the density

R̂sp,rd = R̂s0dsp,rd + g3R̂s1dsp,rd s55d

is found from the relations47d by using theg-expansion of

F̂g which follows from Eq. sA19d an from the relation
n(mmfsrd)=fmmf−arsmdgm=mmf

srd=m0srd. We observe that at
the dominant orderfsee Eqs.sA10d and sA11dg

R̂s0dsp,rd = n0usp,ndun=m0srd s56d

is the free Bose momentum distribution at densityr. Pro-
ceeding as in Eqs.s28d–s30d one finds

R̂s1dsp,rd = F̂s1d
„p,m0srd… − Fn08sp,ndFs1dsnd

r08snd G
n=m0srd

.

s57d

Inserting the expressionsA19d for F̂s1dsp,nd and for Fs1dsnd
=edpF̂s1dsp,nd / s2pd3 one obtains the final result

FIG. 2. Dimensionless densitys49d: n=rs2pl2d3/2 as function
of the chemical potentialm=mb for the binary interactions43d. The
dashed line represents the mean-field prediction which overesti-
mates the density. We put herea;ab / s2pl2d3/2=1.5 and
asgl / r0d3=4Î2/p. The density correction diverges atm=m0,c

=ar0,c=3.93.
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R̂s1dsp,rd = csr,bdFr09snd
r08snd

n08sp,nd − n09sp,ndG
n=m0srd

,

s58d

where

csr,bd =
1

2b
E dk

s2pd3S V̂skd

1 + V̂skdr08„m0srd…
D .

Notice that

E dp

s2pd3R̂s1dsp,rd = 0 s59d

as requested by the fact that the integrals

E dp

s2pd3R̂sp,rd =E dp

s2pd3R̂s0dsp,rd = r s60d

are fixed by the total density.

Some properties ofR̂sp,rd can be derived from those of
the free Bose distribution

n0sp,zd =
z

expsl2p2/2d − z
,

wherez=ebn , 0øz,1, is the activity parameter. One sets

n1sp,zd = b−1n08sp,nd = n0sp,zdf1 + n0sp,zdg,

n2sp,zd = b−2n09sp,nd = n1sp,zdf1 + 2n0sp,zdg. s61d

Then

R̂sp,zd = n0sp,zd + efn1sp,zdrszd − n2sp,zdg, s62d

with

rszd =
r09snd

br08snd
=
E dp n2sp,zd

E dp n1sp,zd
. s63d

The parametere=g3csr ,bdb2 in Eq. s62d incorporates all the
p-independant factorsfsee Eq.s58dg. Since« is proportional
to g3 it can be chosen as small as one wishes at any density
r,r0,c. We observe that

n2sp,zd ø n1sp,zdS1 +
2z

1 − z
D = n1sp,zdS1 + z

1 − z
D s64d

implying

rszd ø
1 + z

1 − z
,

fn1sp,zdrszd − n2sp,zdgp=0 =
z

s1 − zd2Frszd −
1 + z

1 − z
G ø 0.

s65d

One concludes that the distribution atp=0 in presence of the
interaction is always less than the free valuez/ s1−zd. Evalu-
ating the correction asp→` gives

fn1sp,zdrszd − n2sp,zdg , zexps− l2p2/2dfrszd − 1g ù 0,

s66d

since n0sp,zd,n1sp,zd,n2sp,zd,zexps−l2p2/2d , p→`,
and for all p and z, n2sp,zdùn1sp,zd, implying rszdù1.
Thus the momentum distribution is flattened and broadened
by repulsive interactions, as illustrated in Fig. 3.

V. CONCLUDING REMARKS

Divergences occurring at the critical values of the free gas
reflect the fact that the orderg3 of the correction is not ad-
equate there. Since we know from rigorous work that the
exact pressurePg converges to the mean field pressurePmf
for all values of the thermodynamical parametersf6g one
may conclude that the rate of approach to mean field at
critical values of the free gas is of the ordergd for some
0,d,3.

The question of constructing the asymptoticg expansion
valid in the critical regionsup to the critical point includedd
remains an open and challenging problem. In our analysis,
the critical values of density and of temperature are still
those of the free gas. One expects that for nonzero but small
g the critical mean field chemical potentialmmf,c=ar0,c and
densityr0,c will be slightly displaced. Such an information
requires, as a first step, a nonperturbative understanding of
the largeq behavior of the single polymer partition function
kgsqd s11d as q→` for fixed g fin place of the smallg
expansions14d used hereg. For instance an exponential be-
havior kgsqd,e−bCgq would modify the radius of conver-
gence of the seriess10d from n=0 to n=Cg thus causing a
displacement of the critical chemical potential. Exponential
lower and upper bounds have been obtained onksqd, but its
exact largeq asymptotics is not known yetssee a discussion

FIG. 3. Momentum densitys62d: nspd=R̂sp,0.5d as function of
momentump. We putl=1 ande=0.9. The dashed line represents
the ideal gas Bose distribution.
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of these points in Sec. V off1gd. The above considerations
refer to the class of tree graphs. Furthermore one also has to
take into account the contribution of ring graphs in a nonper-
turbative way and possibly of other classes of multicon-
nected graphs representing mutual polymer interactions. It
thus appears that a reliable description of the critical region
including the critical point leads to deep mathematical prob-
lems not solvable by the analysis presented here.

The results of the paper enable nevertheless to obtain
some insight on the immediate vicinity of the critical mean
field values by takingg sufficiently smallsprovided that our
formulas keep their validity up to this pointd. Then qualita-
tive statement could be established, as the fact that the exact
pressure should be higher than that predicted in this region
by the mean field. Another conclusion is that approaching the
critical mean field chemical potentialmmf,c=ar0,c along an
isotherm one finds the interacting gas at a density lower than
that appearing in the mean field approach.
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APPENDIX

1. Polymer representation of the one-body reduced
density matrix

The representation of the off-diagonal reduced density
matrix kr uRsmdur 8l in the formalism of random polymers de-
scribed in Sec. II off1g requires the consideration of open
Brownian pathssopen polymersd in the time interval 0øs
øq with extremities atr and r 8. In the Brownian bridge
notation they are parametrized as

S1 −
s

q
Dr +

s

q
r 8 + lXssd, 0 ø sø q, sA1d

whereXssd is a closed path distributed with the Brownian
bridge measurefEq. s18d in f1g; here and in the sequel we
use the same notations as inf1gg. The open polymerLr ,r8
=(r ,r 8 ,q,Xssd) , 0øsøq is characterized by its end points
r , r 8, the numberq of particles belonging to it and its ran-
dom shapeXssd. By a slight generalization of the analysis
that led to the “magic formula”fEq. s14d in f1gg one obtains
the density for an open polymer immersed in a grand canoni-
cal ensemble of closed polymers as

ropsLr ,r8d =
1

JL
o
n=1

`
1

sn − 1d!
zsLr ,r8d E p

i=2

n

dLizsLid

3expf− bUsLr ,r8,L2,…,Lndg, sA2d

whereJL is the partition function. Ifr =r 8 this reduces to the

the loop densityrloop studied inf1g.2 In view of its formsA2d
ropsLr ,r8d has the Mayer expansion presented in Eqs.s29d–
s31d of f1g in terms of Ursell functions. The only difference
is that the argument of the root point 1=Lr ,r8 has to be iden-
tified with the open polymersA1d. Polymer interactions, ef-
fective activities and Mayer bonds are the same as inf1g
except at the root point, where the interaction between a loop
L j =sR j ,qj ,X jd with an open polymer is

VsLr ,r8,L jd =E
0

q

dsE
0

qj

dsjd̂ss− sjd

3VFS1 −
s

q
Dr +

s

q
r 8 + lXssd − R j − lX jssjdG

sA3d

and the self-energy of the open polymer is

UsLr ,r8d =
1

2
E

0

q

ds1E
0

q

ds2d̂ss1 − s2d

3VSs1 − s2

q
sr − r 8d + l„Xss1d− Xss2d…D−

1

2
qVs0d.

sA4d

Finally, to obtain the one-body density matrixkr uRsmdur 8l,
one has to integrate on the internal degrees of freedom of the
open polymer

kr uRsmdur 8l = o
q=1

`

qE DqsXdexpS−
ur − r 8u2

2ql2 DropsLr ,r8d.

sA5d

Theq factor takes into account the presence ofq particles in
the open polymer and the additionnal Gaussian comes from
the Brownian Wiener weight for a path starting inr at time
s=0 and ending atr 8 at times=q. From now on the analysis
of the Mayer series can be performed exactly along the same
lines as that given inf1g with the following results.

sid The Mayer series representingkr uRsmdur 8l converges
for m sufficiently negativesm,−ar0,cd; for a scaled potential
Vgsr d, the convergence is uniform with respect tog.

sii d Let IsLr ,r8d be the value of the sum of all multiply
connected graphs with root pointLr ,r8, and define the func-
tion of the chemical potentialn

Fr ,r8snd = o
q=1

`

qE DqsXdexpS−
ur − r 8u2

2ql2 DIsLr ,r8d.

sA6d

Then the reduced density matrix is given by

2The quantity −kBTlogropsLr ,r8d can be interpreted as the excess
grand potential when a fixed open polymerLr ,r 8 is introduced in the
system of closed polymers.
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kr uRsmdur 8l = Fr ,r8„m − arsmd…, sA7d

where the densityrsmd solves the self-consistent equation
s5d.

2. The g3 correction

For a scaled potentialsg!1d, the functionFgsr ,nd takes
the asymptotic form

Fgsr ,nd = Ftree
0 sr ,nd + g3fFtree

1 sr ,nd + Fring
1 sr ,ndg + osg3d

sA8d

as in Eq. s6d where Ftree
s0d sr ,nd represents the sum of zero

order contributions coming from the tree diagrams. The sum
of tree diagrams yields

Ftree
g sr ,nd =

1

s2pl2d3/2o
q=1

` expSbnq −
r2

2l2q
D

q3/2 kgsqd,

r = ur u, sA9d

so that

Ftree
s0d sr ,nd = lim

g→0
Ftree

g sr ,nd =
1

s2pl2d3/2o
q=1

` expSbnq −
r2

2l2q
D

q3/2

=E dk

s2pd3e−ik·rn0sk,nd ; r0sr ,nd sA10d

is nothing else than the off-diagonal reduced density matrix
r0sr ,nd=kr uR0sndu0l of the free gas at chemical potentialn.
Indeed,Ftree

s0d sr ,nd is the Fourier transform of the Bose occu-
pation number densityn0sk,nd

n0sk,nd =
1

expS slukud2

2
− bnD − 1

. sA11d

Theg3 correction is obtained in expanding the partition func-
tion kgsqd of a single polymer inFtree

g sr ,nd as done in Eqs.
s11d–s16d

Ftree
s1d sr ,nd =

bVs0d
2

ff s1dsr ,nd − f s2dsr ,ndg,

with f skdsr ,nd =
1

bk

]k

]nkr0sr ,nd. sA12d

Clearly f skdsr ,ndur=0= f skdsnd defined in Eq.s17d. We now per-
form the ring summation to determineFring

s1d sr ,nd. The con-
tribution to IringsLr ,r8d of a ring with one root pointLr ,r8 , n
integrated verticesL j andn+1 linearized bondss−bVd is

1

2
zsLr ,r8d E dL1 ¯E dLnf− bVsLr ,r8,L1dg 3

3Fp
j=1

n−1

zsL jdf− bVsL j,L j+1dgGf− bVsLn,Lr ,r8dg.

sA13d

The factor 1/2 is the symmetry factor of the graph. Introduc-
ing the scaled potentialg3Vsgr d and changing then spatial
integration variablesR j to gR j will produce an overall factor
g3 in Eq. sA13d since there aren+1 bonds. At orderg3, we
are thus entitled to neglect the quantum fluctuation part
glXssjd in the arguments of the potentialfuse dominated
convergence and the fact that the Gaussian measuresDqj

sX jd
are normalizedg. For the same reason we neglect theg de-
pendence in the activities. Within this approximation we take
the bonds and the vertices equal to

VgsLr ,r8,L jd = g3qjE
0

q

dsVFS1 −
s

q
Dgr +

s

q
gr 8 − gR jG ,

VgsL j,L j+1d = qjqj+1g
3VsgR j − gR j+1d,

zsLr ,r8d = zsL jd =
ebnq

qs2pl2qd3/2 ; zs0dsqd. sA14d

At this point we keep theg parameter in combinationsgr
andgr 8 sincer , r 8 can be large. Hence after the change of
variablesR j →gR j Eq. sA13d becomes

g3

2
zs0dsqd o

q1,…,qn

E dR1 ¯ dRn

3H− bE
0

q

dsVFS1 −
s

q
Dgr +

s

q
gr 8 − R1GJ

3Sp
j=1

n

qj
2zs0dsqjdDSp

j=1

n

f− bVsR j − R j+1dgD
3E

0

q

ds8VFRn − S1 −
s8

q
Dgr −

s8

q
gr 8G . sA15d

Introducing the Fourier transformV̂skd and using the convo-
lution theorem yields

g3

2
zs0dsqdff s1dsndgnE

0

q

dsE
0

q

ds8E dk

s2pd3

3expFigk · sr − r 8dSs− s8

q
DGf− bV̂skdgn+1,

sA16d

where f s1dsnd=oq=1
` q2zs0dsqd is the functions17d. This has to

be summed onn=1, 2, … and integrated over the internal
degrees of freedom of the root point according to Eq.sA6d.
One finds
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Fring
s1d sr − r 8,nd =

1

2o
q=1

`

qzs0dsqd

3expS−
ur − r 8u2

2ql2 D E dk

s2pd3E
0

q

dsE
0

q

ds8

3expFigk · sr − r 8dSs− s8

q
DG

3
fbV̂skdg2f s1dsnd

1 + bV̂skdf s1dsnd
. sA17d

Finally, taking Eq.sA14d into account, the Fourier transform

F̂s1dsp,nd=edreip·rFring
s1d sr ,nd at wave numberp is found to

be

F̂ring
s1d sp,nd =

1

2o
q=1

`

qebnqE
0

q

dsE
0

q

ds8E dk

s2pd3

3expF−
l2

2
Up + gkSs− s8

q
DU2

qG fbV̂skdg2f s1dsnd

1 + bV̂skdf s1dsnd

=
1

2
f̂ s2dsp,nd E dk

s2pd3

fbV̂skdg2f s1dsnd

1 + bV̂skdf s1dsnd
+ osgd.

sA18d

As a consequence of the Gaussian weight occurring for off-
diagonal elementsr Þ r 8 the remainingg dependence has

been neglected in Eq.sA18d. f̂ s2dsp,nd is the Fourier trans-
form of the functionsA12d. We note that

E dp

s2pd3F̂ring
s1d sp,nd = Fring

s1d snd

reduces to the formulas18d used in Sec. II.
The final result for theg3 correction is obtained by adding

the tree contributionsA12d–sA18d

F̂s1dsp,nd = F̂tree
s1d sp,nd + F̂ring

s1d sp,nd

=
Vs0d

2
n08sp,nd −

1

2b
n09sp,nd E dk

s2pd3

V̂skd

1 + V̂skdr08snd
,

sA19d

where we have expressed all quantities in terms of the den-
sity and the Bose momentum distributionsA11d of the free
gas.
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